Аннотация:
При решении прикладных задач в самых разных областях принято использовать нормальное распределение в качестве модели статистических закономерностей в наблюдаемых данных с аддитивной структурой. В качестве критерия степени адекватности такой модели можно использовать оценки скорости сходимости в центральной предельной теореме (ЦПТ) теории вероятностей, устанавливающей, что при определенных условиях (например, при условии Линдеберга) суммарное воздействие большого числа случайных факторов проявляется в виде случайной величины с нормальным распределением. Классические оценки скорости сходимости в ЦПТ типа неравенства Берри–Эссеена доказаны при условии конечности третьих моментов слагаемых. Известны также оценки скорости сходимости при существовании моментов порядка $2+\delta$ с $0<\delta<1$. Если существуют моменты лишь второго порядка, то сходимость в ЦПТ может быть как угодно медленной. Если же у слагаемых моменты второго порядка не существуют, то сходимость распределений сумм независимых случайных величин к нормальному закону не имеет места. Условия, гарантирующие справедливость ЦПТ, практически невозможно достоверно проверить при ограниченном объеме наблюдаемой выборки. Поэтому вопрос о том, какой может быть реальная точность нормальной аппроксимации, когда она теоретически не применима, но используется в практических вычислениях, представляет большой интерес. Более того, в некоторых ситуациях при имитационном моделировании, когда распределения слагаемых принадлежат области притяжения устойчивого закона с характеристическим показателем, меньшим двух, при увеличении числа слагаемых сначала наблюдается убывание расстояния между распределением нормированной суммы и нормальным законом и лишь при довольно большом числе слагаемых это расстояние начинает увеличиваться. В данной заметке предпринята попытка дать ответ на сформулированный выше вопрос и привести некоторые теоретические объяснения указанному эффекту.