Аннотация:
Целью данной работы является постановка и аналитическое решение оптимизационных задач нахождения форм трехмерных тел, минимизирующих радиационный нагрев поверхности. С математической точки зрения данные задачи являются изопериметрическими вариационными задачами с двумя неизвестными функциями, описывающими соответственно продольный и поперечный контуры тела. В классе тонких тел, обладающих свойством гомотетии, исходную оптимизационную задачу можно разбить на две более простые: об оптимальном продольном и оптимальном поперечном контурах тела. Показано, что оптимальный поперечный контур будет состоять из $n$ симметричных циклов.