Аннотация:
Рассматриваются примеры инвариантных или частично инвариантных решений уравнений Навье-Стокса ранга два. Эти решения определяются из одномерных линейных или квазилинейных уравнений диффузии. Построено точное решение, описывающее сглаживание начального разрыва поля скоростей в жидкости, которая в начальный момент имеет равномерную завихренность. Эта задача сводится к линейному уравнению диффузии с коэффициентами, зависящими от времени. Сформулированы теоремы существования и несуществования в целом по времени решения задачи о продольной деформации полосы со свободными границами. В этом случае основное квазилинейное уравнение диффузии оказывается интегро-дифференциальным. Третье решение описывает осесимметричный процесс растекания жидкого слоя на твердой плоскости. Здесь соответствующая задача со свободной границей редуцируется к задаче Коши для квазилинейного вырождающегося параболического уравнения второго порядка. Это позволяет доказать ее глобальную разрешимость.
Ключевые слова:линейная и нелинейная диффузия, уравнения Навье–Стокса, задачи со свободной границей, инвариантные и частично инвариантные решения.