Аннотация:
Многочлены Бернулли для натурального $x$ впервые рассматривал Я. Бернулли (1713) в связи с задачей суммирования степеней последовательных натуральных чисел. Для произвольного $x$ эти многочлены изучал Эйлер. А термин многочлены Бернулли был введен Раабе (J. L. Raabe, 1851). Числа и многочлены Бернулли хорошо изучены, нашли широкое применение в различных областях теоретической и прикладной математики.
Работа посвящена некоторым обобщениям чисел и многочленов Бернулли на случай нескольких переменных. Вводится понятие чисел Бернулли, ассоциированных с рациональным конусом, который порожден векторами с целочисленными координатами. Используя числа Бернулли, определяются многочлены Бернулли нескольких переменных. Далее строится разностный оператор, действующий на функциях, определенных в рациональном конусе, и методами теории производящих функций доказывается многомерный аналог основного свойства, состоящего в том, что многочлены Бернулли удовлетворяют разностному уравнению.
Кроме того, вычислены значения интегралов от многочлена Бернулли по сдвигам фундаментального параллелотопа, и для суммы значений мономов в целых точках рационального параллелотопа найден многомерный аналог формулы Бернулли, в которой сумма выражается через интеграл от многочлена Бернулли по параллелотопу с «переменной» вершиной.