Аннотация:
В работе рассматривается нелинейное параболическое уравнение, описывающее процесс теплопроводности в случае степенной зависимости коэффициента теплопроводности от температуры. Помимо распространения тепла в пространстве, оно моделирует также фильтрацию политропного газа в пористой среде, в связи с чем в англоязычной литературе его обычно называют «the porous medium equation». Отличительной особенностью данного уравнения является вырождение его параболического типа в случае, когда обращается в нуль искомая функция, вследствие чего уравнение приобретает свойства, обычно характерные для уравнений первого порядка. В частности, для него в некоторых случаях удается обосновать теоремы существования и единственности решений типа тепловой волны (волны фильтрации). В настоящей статье доказана теорема существования и единственности решения задачи о движении тепловой волны с заданным фронтом в случае двух независимых переменных. При этом, поскольку фронт имеет вид замкнутой плоской кривой, то производится переход в полярную систему координат. Решение строится в виде ряда, для вычисления коэффициентов которого предложена конструктивная рекуррентная процедура. Сходимость ряда доказывается при помощи метода мажорант. Разработан и реализован в виде программы для ЭВМ вычислительный алгоритм на основе метода граничных элементов для решения изучаемой задачи. Рассмотрены тестовые примеры, причем расчеты, выполненные с помощью созданной авторами программы, сравнивались с отрезками построенных рядов. Установлено хорошее соответствие полученных результатов.
Ключевые слова:нелинейные уравнения с частными производными, тепловая волна, степенной ряд, теорема существования и единственности, метод граничных элементов, вычислительный эксперимент.