Аннотация:
В статье исследуется многомерное уравнение нелинейной теплопроводности. Это уравнение представлено в виде переопределенной системы дифференциальных уравнений с частными производными (число уравнений больше числа искомых функций). Как известно, переопределенная система дифференциальных уравнений может быть несовместной, у нее может не существовать ни одного решения. Поэтому для установления факта существования решений и степени их произвола проводится анализ данной переопределенной системы дифференциальных уравнений. В итоге проведенного исследования получены не только достаточные, но и необходимые и достаточные условия совместности переопределенной системы дифференциальных уравнений с частными производными. На основе этих результатов с использованием уравнения Лиувилля и теоремы о необходимом и достаточном условии потенциальности векторного поля излагается подход, позволяющий в ряде случаев конструктивно построить точные неотрицательные решения многомерного уравнения нелинейной теплопроводности с конечной скоростью распространения возмущений. Среди построенных точных решений имеются и такие, которые не являются инвариантными с точки зрения групп точечных преобразований и групп Ли–Беклунда. Особое внимание уделено уравнению со степенным коэффициентом нелинейной теплопроводности. Это уравнение является квазилинейным параболическим уравнением с неявным вырождением. Данное уравнение из параболического дифференциального уравнения второго порядка вырождается в нелинейное эволюционное уравнение первого порядка типа Гамильтона–Якоби.
Ключевые слова:многомерное уравнение нелинейной теплопроводности, конечная скорость распространения возмущений, точные неотрицательные решения.