RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Иркутского государственного университета. Серия «Математика» // Архив

Известия Иркутского государственного университета. Серия Математика, 2017, том 19, страницы 150–163 (Mi iigum294)

Нелокальное улучшение управлений в нелинейных дискретных системах

О. В. Моржин

Институт проблем управления им. В. А. Трапезникова РАН

Аннотация: Рассматривается нелинейная задача оптимального управления дискретной системой, содержащая как управляющую функцию, так и управляющие параметры (параметры входят в правую часть системы и начальное условие). Для данной оптимизационной задачи исследуется задача улучшения управления. Развивается известный подход к нелокальному улучшению управления, базирующийся на построении точной (без остаточных членов разложений по переменным состояния и управления) формулы приращения целевого функционала при специальной сопряженной системе.
Для данной нелинейной оптимизационной задачи рассмотрен обобщенный лагранжиан, следуя теории В. Ф. Кротова. Функция $\varphi(t,x)$, играющая важную роль в обобщенном лагранжиане, рассматривается в статье в линейном по $x$ виде $\varphi(t,x) =$ $=\langle p(t), x \rangle$, где функция $p(t)$ является решением указанной сопряженной системы. Таким образом, во-первых, точная формула приращения целевого функционала рассматривается в предположении существования решения $p(t)$; и, во-вторых, линейная функция $\varphi(t,x)$ здесь использована в связи с получением указанной формулы приращения, а не для линейной аппроксимации приращения обобщенного лагранжиана. Сформулировано соответствующее условие улучшения управления в терминах краевой задачи, образованной объединением системы, данной в оптимизационной задаче, вместе с сопряженной системой. Полученное условие улучшения аналогично условиям улучшения, ранее предложенным в работах автора для дискретных задач без управляющих параметров.
Приведен иллюстративный пример улучшения управления в задаче, в которой подлежащее улучшению управление дает максимум функции Понтрягина при всех значениях $t$. Краевая задача улучшения решена с помощью метода пристрелки, причем вычисления осуществлены аналитически.

Ключевые слова: дискретные системы, оптимальное управление, управляющие функции и параметры, нелокальное улучшение.

УДК: 517.977

MSC: 49J21, 93C10

DOI: 10.26516/1997-7670.2017.19.150



Реферативные базы данных:


© МИАН, 2024