Аннотация:
В работе представлен новый метод вычисления значений производных в LD-разложении параметризованных матриц, основанном на прямой процедуре модифицированной взвешенной ортогонализации Грама–Шмидта.
Потребность в вычислении значений производных в матричных ортогональных преобразованиях возникает в теории возмущений и управления, дифференциальной геометрии, при решении таких задач, как вычисление экспонент Ляпунова, задач автоматического дифференцирования, вычисления численного решения матричного дифференциального уравнения Риккати, вычисления производных высокого порядка в задаче планирования эксперимента. В задаче параметрической идентификации математических моделей дискретных линейных стохастических систем подобные вопросы решают при разработке численно эффективных алгоритмов нахождения решения матричного разностного уравнения чувствительности Риккати.
В данной работе поставлена и решена новая задача вычисления значений производных. Основной теоретический результат представлен леммой 1. Практическим результатом является вычислительный алгоритм 2. Программная реализация алгоритма позволяет быстро и с высокой точностью вычислить значения производных элементов параметризованных матриц, являющихся результатом прямой процедуры LD-разложения. При этом нет необходимости вычислять значения производных элементов матрицы взвешенного ортогонального преобразования. Алгоритм имеет простую структуру и не содержит сложных операций символьного либо численного дифференцирования. Требуется только одно обращение треугольной матрицы и простые матричные операции сложения и умножения.
Рассмотрены два численных примера, которые показывают работоспособность и численную эффективность предложенного алгоритма.
Полученные в работе результаты будут использованы для построения новых классов адаптивных LD-фильтров в области параметрической идентификации математических моделей дискретных линейных стохастических систем.