RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Иркутского государственного университета. Серия «Математика» // Архив

Известия Иркутского государственного университета. Серия Математика, 2018, том 26, страницы 91–104 (Mi iigum359)

Some modifications of Newton's method for solving systems of equations

[Некоторые модификации метода Ньютона для решения систем уравнений]

V. A. Srochko

Irkutsk State University, Irkutsk, Russian Federation

Аннотация: Рассматривается задача численного решения системы нелинейных уравнений. Проводится разработка и обоснование двух модификаций метода Ньютона, связанных с идеей параметризации. При этом выбор параметра направлен на обеспечение свойства монотонности итерационного процесса по некоторой невязке.
Первая модификация использует чебышевскую невязку системы. Для поиска направления спуска предлагается решать подсистему ньютоновской линейной системы, которая содержит только уравнения, соответствующие максимальным по модулю значениям функций в текущей точке. Это приводит, вообще говоря, к уменьшению вычислительной трудоемкости модификации по сравнению с методом Ньютона. Кроме того расширяется работоспособность: подсистема может иметь решение, когда полная система не совместна. Формула для параметра получена из условия минимума параболической аппроксимации для невязки вдоль направления спуска.
Вторая модификация связана с евклидовой невязкой системы и использует константу Липшица для матрицы Якоби. Получена оценка сверху для этой невязки в форме сильно выпуклой функции. В результате построена модификация, которая в отличие от метода Ньютона обеспечивает нелокальное уменьшение евклидовой невязки на каждой итерации. Доказана глобальная сходимость по невязке для любого начального приближения со скоростью геометрической прогрессии.

Ключевые слова: нелинейная система уравнений, метод Ньютона с параметром, модификации.

УДК: 519.6

MSC: 41A25, 65D99

Поступила в редакцию: 10.10.2018

Язык публикации: английский

DOI: 10.26516/1997-7670.2018.26.91



Реферативные базы данных:


© МИАН, 2024