RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Иркутского государственного университета. Серия «Математика» // Архив

Известия Иркутского государственного университета. Серия Математика, 2019, том 27, страницы 3–14 (Mi iigum362)

Эта публикация цитируется в 2 статьях

О классах булевых функций, порожденных максимальными частичными ультраклонами

С. А. Бадмаев

Бурятский государственный университет, Улан-Удэ, Российская Федерация

Аннотация: Рассматриваются множества мультифункций. Под мультифункцией на конечном множестве $A$ понимается функция, определенная на множестве $A$ и принимающая в качестве значений его подмножества. Очевидно, что суперпозиция в обычном смысле при работе с мультифункциями не подходит. Поэтому для них необходимо новое определение суперпозиции. Обычно рассматривается два способа определения суперпозиции: в основе первого лежит объединение подмножеств множества $A$, и в этом случае замкнутые множества, содержащие все проекции, называются мультиклонами, а в основе второго — пересечение подмножеств множества $A$, и замкнутые множества, содержащие все проекции, называются частичными ультраклонами. Множество мультифункций на $A$, с одной стороны, содержит в себе все функции $|A|$-значной логики, а с другой является подмножеством функций $2^{|A|}$-значной логики с суперпозицией, сохраняющей эти подмножества.
Для функций $k$-значной логики интересной является задача их классификации. Одним из известных вариантов классификации функций $k$-значной логики является тот, при котором функции в замкнутом подмножестве $B$ замкнутого множества $M$ могут быть разбиты согласно их принадлежности предполным в $M$ классам. В данной работе в роли подмножества $B$ выступает множество всех булевых функций, а в качестве множества $M$ — множество всех мультифункций на двухэлементном множестве, и при этом предполными классами являются максимальные частичные ультраклоны.

Ключевые слова: мультифункция, суперпозиция, клон, ультраклон, максимальный клон.

УДК: 519.716

MSC: 8A99,03B50

Поступила в редакцию: 01.02.2019

DOI: 10.26516/1997-7670.2019.27.3



Реферативные базы данных:


© МИАН, 2024