Аннотация:
Ранг семейства теорий подобен рангу Морли и может служить мерой сложности или богатства данного семейства. Увеличивая ранг расширениями семейства, мы получаем более богатые семейства, которые в случае достижения бесконечности могут рассматриваться как “достаточно богатые”. В данной статье реализуются ранги для семейств теорий абелевых групп. В частности, изучаются ранги и замыкания для семейств теорий конечных абелевых групп. Показано, что множество теорий конечных абелевых групп не является тотально трансцендентным, т.е. его ранг равен бесконечности. В терминах шмелевских инвариантов характеризуются псевдоконечные абелевы группы. Кроме того, характеризуются $e$-минимальные семейства теорий абелевых групп как на языке размерности, т.е. числа независимых пределов шмелевских инвариантов, так и в терминах неравенств для шмелевских инвариантов. Эти характеризации получены для конечных абелевых групп и в общем случае. Найдены характеризации аппроксимируемости теорий абелевых групп и показаны возможности подсчета шмелевских инвариантов через параметры аппроксимаций. Описаны возможности построения $d$-определимых семейств теорий абелевых групп, имеющих данный счетный ранг и данную степень.