Аннотация:
Изучается система двух нелинейных уравнений в частных производных четвертого порядка. Правые части системы уравнений содержат многомерные аналоги уравнения Буссинеска, выражаемые через двукратные операторы Лапласа и квадраты градиентов искомых функций, а также линейные функции взаимосвязи. Такого рода уравнения, близкие к уравнениям
Навье–Стокса, встречаются в задачах гидродинамики. Предлагается искать решение в виде анзаца, содержащего квадратичную зависимость от пространственных переменных и произвольные функции от времени. Использование предложенного анзаца позволяет декомпозировать процесс отыскания компонент решения зависящих от пространственных переменных и от времени. Для отыскания зависимости от пространственных переменных необходимо решать алгебраическую систему матричных, векторных и скалярного уравнения. Найдено общее решение этой системы уравнений в параметрическом виде. Для отыскания компонент решения исходной системы, зависящих от времени, возникает система нелинейных обыкновенных дифференциальных уравнений. Эта система сведена к одному уравнению четвертого порядка, для которого найдены частные решения. Приводится ряд примеров построенных точных решений исходной системы уравнений типа Буссинеска, в том числе выражаемые через функции Якоби по времени и анизотропные по пространственным переменным.
Ключевые слова:нелинейная система, нелинейные уравнения типа Буссинеска, редукция, точные решения.