RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Иркутского государственного университета. Серия «Математика» // Архив

Известия Иркутского государственного университета. Серия Математика, 2020, том 31, страницы 132–141 (Mi iigum410)

Эта публикация цитируется в 7 статьях

Алгебро-логические методы в информатике и искусственный интеллект

Groups with a strongly embedded subgroup saturated with finite simple non-abelian groups

[Группы с сильно вложенной подгруппой, насыщенные конечными простыми неабелевыми группами]

A. A. Shlepkin

Siberian Federal University, Krasnoyarsk, Russian Federation

Аннотация: Важным понятием в теории конечных групп является понятие сильно вложенной подгруппы. Принципиальный результат о строении конечных групп с сильно вложенной подгруппой принадлежит М. Сузуки. Полная классификация конечных групп с сильно вложенной подгруппой получена Г. Бендером. Бесконечные периодические группы с сильно вложенной подгруппой впервые были исследованы В. П. Шунковым и А. Н. Измайловым при некоторых ограничениях на рассматриваемые группы. В работе установлено строение периодической группы с сильно вложенной подгруппой, насыщенной конечными простыми неабелевыми группами. Понятия сильно вложенной подгруппы и группы, насыщенной заданным множеством групп, не предполагают периодичности исходной группы. В связи с чем возникает вопрос о расположении элементов конечного порядка как в группах с сильно вложенной подгруппой, так и в группах, насыщенных некоторым множеством групп. Одним из интересных классов смешанных групп (т. е. групп, содержащих как элементы конечного порядка, так и элементы бесконечного порядка) является класс групп Шункова. Доказано, что группа Шункова с сильно вложенной подгруппой, насыщенная конечными простыми неабелевыми группами, обладает периодической частью.

Ключевые слова: периодическая группа, группа Шункова, группы, насыщенные заданным множеством групп, сильно вложенная подгруппа, теорема Бендера.

УДК: 512.54

MSC: 20E25

Поступила в редакцию: 21.10.2019

Язык публикации: английский

DOI: 10.26516/1997-7670.2020.31.132



Реферативные базы данных:


© МИАН, 2024