Аннотация:
Рассматривается антипериодическая краевая задача для полулинейного дифференциального уравнения с дробной производной Капуто порядка $q\in (1,2)$ в сепарабельном банаховом пространстве. Для разрешения поставленной задачи мы конструируем, используя теорию дробного анализа и свойства функции Миттаг-Леффлера, соответствующую задаче функцию Грина. Затем исходная задача сводится к задаче о существовании неподвижных точек разрешающего интегрального оператора. Для доказательства существования неподвижных точек разрешающего оператора мы исследуем его свойства на основе теории топологической степени для уплотняющих отображений и используем обобщенную теорему типа Б. Н. Садовского о неподвижной точке.