Аннотация:
М. К. Тамбурини и П. Цукка [10] доказали, что специальная линейная группа размерности больше 13 над кольцом целых гауссовых чисел порождается тремя инволюциями, две из которых перестановочны. Аналогичный результат для проективных специальных линейных групп размерности больше 6 установили Д. В. Левчук и Я. Н. Нужин [9; 2]. В статье рассмотрены оставшиеся малые размерности. В частности, доказано, что проективная специальная линейная группа размерности, отличной от 5 и 6, над кольцом целых гауссовых чисел тогда и только тогда порождается тремя инволюциями, две из которых перестановочны, когда ее размерность больше 6. Для размерностей 5 и 6 удалось найти только порождающие тройки инволюций без условия перестановочности двух из них.
Ключевые слова:специальная и проективная специальная линейные группы, кольцо целых гауссовых чисел, порождающие тройки инволюций.