Аннотация:
Метод обнаружения вероятностных законов — логический метод машинного обучения, представляющий собой вариант выучивания вероятностных правил. В ряде аспектов он близок к таким методам,как деревья решений / случайный лес, но существенно отличается от них тем, как определяются значимые правила. Процедура обучения решает задачу оптимизации, связанную с поиском правил (называемых вероятностными законами), которые имеют минимальную длину и относительно высокую вероятность. Для предсказания используются ансамбли таких правил. Вероятностные законы удобочитаемы для человека, а получаемые модели — прозрачны и изначально интерпретируемы. Приложения метода включают задачи классификации, кластеризации, регрессии, а также анализ временных рядов, обнаружение аномалий и адаптивное управление. Излагаются основные принципы метода, определяются его преимущества и ограничения и предоставляются некоторые рекомендации по применению.