RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Иркутского государственного университета. Серия «Математика» // Архив

Известия Иркутского государственного университета. Серия Математика, 2023, том 45, страницы 24–36 (Mi iigum532)

Эта публикация цитируется в 1 статье

Динамические системы и оптимальное управление

Решение линейно-квадратичных задач в дискретно-непрерывном формате с внешними воздействиями

В. А. Срочко, В. Г. Антоник

Иркутский государственный университет, Иркутск, Российская Федерация

Аннотация: Рассматриваются две задачи линейно-квадратичного типа на множестве кусочно-постоянных управлений. Первая задача содержит дискретное возмущение в правой части управляемой системы и неопределенные параметры в квадратичном функционале со знаконеопределенными матрицами. Решение проводится по правилу гарантированного результата и реализуется в форме конечномерной минимаксной задачи. Получены условия на параметры, приводящие целевую функцию к выпукло-вогнутой структуре и открывающие возможность эффективного решения задачи. Это линейные неравенства, содержащие экстремальные собственные значения симметричных матриц. Вторая задача связана с функционалом в дискретном варианте, который задается как отклонение фазовой траектории от последовательных по времени реализаций внешнего воздействия. Это приводит к пошаговому решению задачи на экстремум данной функции в каждой узловой точке промежутка времени. Возникающие на этом пути локальные задачи допускают эффективное решение за конечное число итераций.

Ключевые слова: линейно-квадратичные задачи, дискретные воздействия на систему и функционал, редукция к задачам выпуклого программирования.

УДК: 517.977

MSC: 49M25

Поступила в редакцию: 30.05.2023
Исправленный вариант: 05.07.2023
Принята в печать: 12.07.2023

DOI: 10.26516/1997-7670.2023.45.24



© МИАН, 2024