Аннотация:
Исследуется задача оптимального управления нелинейной динамической системой «каскадного» типа с общими концевыми и нерегулярными поточечными фазовыми ограничениями — так называемыми ограничениями глубины 2. Эта задача допускает уточненную формулировку принципа максимума Понтрягина в терминах (нестандартной) функции Гамильтона – Понтрягина второго порядка. Исследуется вопрос об оценке скачка производной функции – множителя Лагранжа, отвечающего фазовому ограничению. Получены условия, при которых принцип максимума влечет равномерные по времени оценки на скачок указанной функции. В частности, приводятся достаточные условия отсутствия скачка (т. е. непрерывной дифференцируемости) множителя. Результаты опираются на понятия 2-регулярности фазового ограничения и так называемые зоны регулярности задачи. Полученные оценки представляют интерес для теории принципа максимума Понтрягина и могут быть использованы на практике, в том числе для реализации известного метода «стрельбы» в рамках одного из стандартных подходов к численной интерпретации необходимого условия оптимальности.
Ключевые слова:оптимальное управление, фазовые ограничения, принцип максимума Понтрягина, условия регулярности, численные методы.