Аннотация:
В статье рассматривается дискретный оператор Шрёдингера на графе с вершинами на двух пересекающихся прямых, возмущенный убывающим потенциалом. Исследуются спектральные свойства этого оператора. Исследуется задача рассеяния для данного оператора в случае малого потенциала, а также в случае, когда малы как потенциал, так и скорость квантовой частицы. Получены асимптотические формулы для вероятностей распространения частицы во всех возможных направлениях. Кроме того, исследуются спектральные свойства дискретного оператора Шрёдингера для бесконечной полосы с нулевыми граничными условиями. Описана картина рассеяния. Получены простые формулы для вероятностей прохождения и отражения вблизи граничных точек подзон (это отвечает малым скоростям квантовой частицы) в случае малых потенциалов. Рассматривается одночастичный дискретный оператор Шрёдингера с периодическим потенциалом, возмущенным функцией, периодической по двум переменным и экспоненциально убывающей по третьей. Исследуется задача рассеяния для данного оператора вблизи точки экстремума по третьей координате квазиимпульса некоторого собственного значения оператора Шрёдингера с периодическим потенциалом в ячейке, то есть для малой перпендикулярной составляющей угла падения частицы на потенциальный барьер. Получены простые формулы для вероятностей прохождения и отражения.