RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Института математики и информатики Удмуртского государственного университета // Архив

Изв. ИМИ УдГУ, 2018, том 52, страницы 47–58 (Mi iimi360)

Эта публикация цитируется в 1 статье

Критерий равномерной глобальной достижимости линейных систем

А. А. Козлов

Полоцкий государственный университет, 211440, Республика Беларусь, г. Новополоцк, ул. Блохина, 29

Аннотация: В статье рассматривается линейная нестационарная управляемая система с локально интегрируемыми и интегрально ограниченными коэффициентами
\begin{equation} \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \tag{1} \end{equation}
Управление в системе $(1)$ строится по принципу линейной обратной связи $u=U(t)x$ с измеримой и ограниченной матричной функцией $U(t)$, $t\geqslant 0$. Для замкнутой системы
\begin{equation} \dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \tag{2} \end{equation}
устанавливается критерий ее равномерной глобальной достижимости. Это свойство означает существование такого $T>0$, что для всяких положительных чисел $\alpha$ и $\beta$ найдется $d=d(\alpha,\beta)>0$, обеспечивающее при всяком $t_0\geqslant 0$ и произвольной $(n\times n)$-матрице $H$, $\|H\|\leqslant\alpha$, $\det H\geqslant\beta$, возможность построения измеримого на $[t_0,t_0+T]$ матричного управления $U(\cdot)$, для которого справедлива оценка $\sup\limits_{t\in [t_0,t_0+T]}\|U(t)\|\leqslant d$ и равенство $X_U(t_0+T,t_0)=H$, где $X_U$ — матрица Коши системы (2). Доказательство критерия основано на полученной в работе теореме о представлении всякой $(n\times n)$-матрицы с положительным определителем в виде произведения девяти верхне- и нижнетреугольных матриц с положительными диагональными элементами и дополнительными условиями на норму и определитель этих матриц.

Ключевые слова: линейная управляемая система, матрица Коши, равномерная глобальная достижимость.

УДК: 517.926, 517.977

MSC: 34D08, 34H05, 93C15

Поступила в редакцию: 01.07.2018

DOI: 10.20537/2226-3594-2018-52-04



Реферативные базы данных:


© МИАН, 2024