Аннотация:
В работе исследуется распределенная модель брюсселятора с диффузией. Известно, что в этой модели проявляются бифуркации Андронова–Хопфа и Тьюринга. Показано, что в параметрической зоне диффузионной неустойчивости модель генерирует множество устойчивых пространственно неоднородных структур (паттернов). Эта система демонстрирует феномен мультистабильности с разнообразием устойчивых пространственных структур. В то же время каждый паттерн имеет свой уникальный параметрический диапазон, в котором он может наблюдаться. Акцент сделан на анализе стохастических явлений формирования паттерна и переходов, вызванных малыми случайными возмущениями. Стохастические эффекты изучаются с помощью анализа пространственной модальности. Показано, что структуры обладают различной степенью стохастической чувствительности.
Ключевые слова:модель реакции-диффузии, неустойчивость по Тьюрингу, самоорганизация, формирование паттерна, индуцированная шумом динамика, модальный анализ.