RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Института математики и информатики Удмуртского государственного университета // Архив

Изв. ИМИ УдГУ, 2019, том 53, страницы 138–157 (Mi iimi377)

Эта публикация цитируется в 1 статье

Ультрафильтры и максимальные сцепленные системы: основные соотношения

А. Г. Ченцовab

a Институт математики и механики им. Н. Н. Красовского УрО РАН, 620990, Россия, г. Екатеринбург, ул. С. Ковалевской, 16
b Уральский федеральный университет, 620002, Россия, г. Екатеринбург, ул. Мира, 19

Аннотация: Исследуются ультрафильтры и максимальные сцепленные системы, элементами которых являются множества фиксированной $\pi$-системы с «нулем» и «единицей». Ультрафильтры являются максимальными сцепленными системами, но среди последних могут быть системы, не являющиеся ультрафильтрами. В работе особое внимание уделяется описанию множества максимальных сцепленных систем, не являющихся ультрафильтрами (в статье они именуются собственными). По своим свойствам данные (максимальные сцепленные) системы существенно отличаются от ультрафильтров. Получены необходимые и достаточные условия существования упомянутых систем (имеются в виду условия на исходную $\pi$-систему), а также некоторые топологические свойства, характеризующие множество всех максимальных сцепленных систем упомянутого типа. При этом для построения соответствующего оснащения, как и в случае ультрафильтров, применяются схемы, восходящие к процедурам, используемым при построении расширения Волмэна и компактов Стоуна; упомянутые схемы реализуются, однако, в случае, когда предваряющая измеримая (по смыслу) структура задается $\pi$-системой общего вида. Это позволяет, в частности, охватить единой конструкцией процедуры построения пространств ультрафильтров и максимальных сцепленных систем в измеримых и топологических пространствах. В рамках данной конструкции естественным образом возникают битопологические пространства, отвечающие волмэновскому и стоуновскому вариантам оснащения, первое из которых в случае максимальных сцепленных систем приводит к реализации суперкомпактного $T_1$-пространства. Указаны примеры, в которых все максимальные сцепленные системы являются ультрафильтрами, что соответствует реализации суперкомпактного пространства ультрафильтров при использованиии топологии волмэновского типа.

Ключевые слова: битопологическое пространство, максимальная сцепленная система, ультрафильтр.

УДК: 519.6

MSC: 28A33

Поступила в редакцию: 04.12.2018

DOI: 10.20537/2226-3594-2019-53-12



Реферативные базы данных:


© МИАН, 2024