RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Института математики и информатики Удмуртского государственного университета // Архив

Изв. ИМИ УдГУ, 2019, том 54, страницы 3–26 (Mi iimi378)

Эта публикация цитируется в 1 статье

О спектре релятивистского гамильтониана Ландау с периодическим электрическим потенциалом

Л. И. Данилов

Удмуртский федеральный исследовательский центр УрО РАН, 426067, Россия, г. Ижевск, ул. Т. Барамзиной, 34

Аннотация: Рассматривается двумерный оператор Дирака $\widehat \sigma _1\bigl( -i\, \frac {\partial } {\partial x_1}\bigr) +\widehat \sigma _2\bigl( -i\, \frac {\partial }{\partial x_2}-Bx_1\bigr) +m\widehat \sigma _3+ V\widehat I_2$ с однородным магнитным полем $B$ с потоком $\eta =(2\pi )^{-1}Bv(K)\in \mathbb{Q} $ через элементарную ячейку $K$ общей решетки периодов $\Lambda $ функции $m$ и электрического потенциала $V$; $\widehat \sigma _j$, $j=1,2,3$, — матрицы Паули, $\widehat I_2$ — единичная $2\times 2$-матрица, $v(K)$ — площадь элементарной ячейки $K$. Предполагается, что $m$ и $V$ принадлежат пространству $L^p_{\Lambda }({\mathbb R}^2;{\mathbb R} )$ периодических с решеткой периодов $\Lambda $ функций из $L^p_{\mathrm {loc}}({\mathbb R}^2;{\mathbb R} )$, $p>2$. Для невозрастающей функции $(0,1]\ni \varepsilon \mapsto {\mathcal R}(\varepsilon )\in (0,+\infty )$, для которой ${\mathcal R}(\varepsilon )\to +\infty $ при $\varepsilon \to +0$, пусть ${\mathfrak M}^p_{\Lambda }({\mathcal R}(\cdot ))$ — множество функций $m\in L^p_{\Lambda }({\mathbb R}^2;{\mathbb R} )$ таких, что для любого $\varepsilon \in (0,1]$ найдется тригонометрический многочлен ${\mathcal P}^{(\varepsilon )}\in L^p_{\Lambda }({\mathbb R}^2;{\mathbb R} )$, для которого $\| m-{\mathcal P}^{(\varepsilon )}\| _{L^p(K)}<\varepsilon $ и все коэффициенты Фурье ${\mathcal P}^{(\varepsilon )}_Y=0$ при $|Y|>{\mathcal R}(\varepsilon )$. Доказано, что для любой рассматриваемой функции ${\mathcal R}(\cdot )$ в банаховом пространстве $(L^p_{\Lambda } ({\mathbb R}^2;{\mathbb R}),\| \cdot \| _{L^p(K)})$ существует множество второй категории (плотное $G_{\delta }$-множество) ${\mathcal O}$ такое, что для любого электрического потенциала $V\in {\mathcal O}$, любой функции $m\in {\mathfrak M}^p_{\Lambda }({\mathcal R}(\cdot ))$ и любого однородного магнитного поля $B$ с потоком $\eta \in \mathbb{Q}$ спектр оператора Дирака абсолютно непрерывен.

Ключевые слова: двумерный оператор Дирака, периодический электрический потенциал, однородное магнитное поле, спектр.

УДК: 517.958, 517.984.56

MSC: 35P05

Поступила в редакцию: 24.10.2019

DOI: 10.20537/2226-3594-2019-54-01



Реферативные базы данных:


© МИАН, 2024