Аннотация:
В этой статье исследуется дифференциальная игра преследования–убегания, когда на управления игроков налагаются дифференциальные ограничения вида интегрального неравенства Гронуолла. Отметим, что стратегия параллельного преследования (короче, $\Pi$-стратегия) была введена и использована Л. А. Петросяном для решения задач простого преследования при фазовых ограничениях на состояний игроков для случая, когда функции управления обоих игроков выбираются из класса $L_\infty$. В настоящей работе для решения задачи простого преследования построена $\Pi$-стратегия, когда функции управления обоих игроков выбираются из различных классов с ограничениями типа Гронуолла и для этого случая найдены достаточные условия поимки и оптимальное время поимки. Для решения задачи убегания предлагается функция управления для убегающего и находятся достаточные условия убегания. Кроме того, построена область достижимости игроков и даны условия вложения ее по времени. Полученные результаты являются развитием и продолжением работ Р. Айзекса, Л. А. Петросяна, Б. Н. Пшеничного, А. А. Чикрия, А. А. Азамова и других исследователей, включая авторов этой работы.