RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Института математики и информатики Удмуртского государственного университета // Архив

Изв. ИМИ УдГУ, 2022, том 59, страницы 85–113 (Mi iimi430)

Эта публикация цитируется в 1 статье

МАТЕМАТИКА

О регуляризации принципа Лагранжа в задачах оптимизации линейных распределенных систем вольтеррова типа с операторными ограничениями

В. И. Суминab, М. И. Суминba

a Нижегородский государственный университет им. Н. И. Лобачевского, 603950, Россия, г. Нижний Новгород, пр. Гагарина, 23
b Тамбовский государственный университет им. Г. Р. Державина, 392000, Россия, г. Тамбов, ул. Интернациональная, 33

Аннотация: Рассматривается регуляризация классических условий оптимальности — принципа Лагранжа и принципа максимума Понтрягина — в выпуклой задаче оптимального управления с операторным ограничением-равенством и функциональными ограничениями-неравенствами. Управляемая система задается линейным функционально-операторным уравнением II рода общего вида в пространстве $L^m_2$, основной оператор правой части уравнения предполагается квазинильпотентным. Целевой минимизируемый функционал задачи является сильно выпуклым. Получение регуляризованных условий оптимальности основано на использовании метода двойственной регуляризации. Основное предназначение регуляризованных принципа Лагранжа и принципа максимума Понтрягина — устойчивое генерирование в рассматриваемой задаче обобщенных минимизирующих последовательностей — минимизирующих приближенных решений в смысле Дж. Варги. В качестве приложения результатов для задачи оптимального управления линейным функционально-операторным уравнением II рода общего вида рассматриваются два примера конкретных задач оптимального управления, связанных с системой уравнений с запаздыванием и с интегродифференциальным уравнением типа уравнения переноса.

Ключевые слова: выпуклое оптимальное управление, распределенная система, функционально-операторное уравнение вольтеррова типа, операторное ограничение, некорректность, регуляризация, двойственность, минимизирующее приближенное решение, регуляризирующий оператор, принцип Лагранжа, принцип максимума Понтрягина.

УДК: 517.9

MSC: 49K20, 39B22, 49N15, 47A52

Поступила в редакцию: 24.12.2021
Принята в печать: 15.03.2022

DOI: 10.35634/2226-3594-2022-59-07



Реферативные базы данных:


© МИАН, 2024