Аннотация:
Для конечномерных задач математического программирования (аппроксимирующих задач), получаемых путем параметрической аппроксимации управляющих функций в сосредоточенных задачах оптимального управления с функциональными ограничениями типа равенства, вводятся понятия жесткости и гибкости системы ограничений. Жесткость в данной допустимой точке понимается в том смысле, что эта точка является изолированной точкой допустимого множества; в противном случае называем систему ограничений гибкой в данной точке. При использовании параметрической аппроксимации управления с помощью функций Гаусса и при выполнении некоторых естественных предположений устанавливается, что для обеспечения гибкости системы ограничений в данной допустимой точке достаточно увеличения размерности пространства параметров аппроксимирующей задачи. Проверка сделанных предположений иллюстрируется на примере задачи о мягкой посадке на Луну.
Ключевые слова:сосредоточенные задачи оптимального управления с функциональными ограничениями типа равенства, параметрическая аппроксимация управления, жесткость и гибкость системы ограничений, функции Гаусса, квадратичные экспоненты.