RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Института математики и информатики Удмуртского государственного университета // Архив

Изв. ИМИ УдГУ, 2023, том 62, страницы 125–155 (Mi iimi457)

МАТЕМАТИКА

Некоторые задачи сближения нелинейных управляемых систем в фиксированный момент времени

В. Н. Ушаков, А. А. Ершов, А. В. Ушаков, А. Р. Матвийчук

Институт математики и механики УрО РАН, 620219, Россия, г. Екатеринбург, ул. С. Ковалевской, 16.

Аннотация: Изучается игровая задача о сближении нелинейной управляемой системы с целевым множеством в конечномерном фазовом пространстве в фиксированный момент времени. Задача формулируется и изучается в рамках понятий и конструкций теории антагонистических позиционных дифференциальных игр, созданной Н.Н. Красовским и А.И. Субботиным во второй половине 20 века. Одной из центральных проблем теории позиционных дифференциальных игр является проблема вычисления множеств позиционного поглощения в игровых задачах о сближении. В работе исследуется ключевое в теории позиционных дифференциальных игр свойство стабильности, представляющее собой характеристику некоторых замкнутых множеств в пространстве позиций управляемой системы, удобных первому игроку для ведения игры. Важно то, что это свойство является характерным и для множеств разрешимости в задачах о сближении: привлечение понятия стабильности к исследованиям позволяет в некоторых конкретных задачах о сближении получать аналитические описания множеств разрешимости и в ряде конкретных задач разрабатывать алгоритмы приближенного вычисления решения. Приведены некоторые модификации определения $u$-стабильного моста в рассматриваемой задаче о сближении и системы множеств, аппроксимирующей множество достижимости. Приведены также конкретные задачи о сближении механических систем, проведено моделирование решений задач на ЭВМ и представлены графические результаты моделирования.

Ключевые слова: конфликтно управляемая система, управление, игрок, игровая задача о сближении, фиксированный момент, множество разрешимости, позиционная стратегия, позиция, стабильность.

УДК: 517.958, 530.145.6

MSC: 93C15, 49N30, 49N35

Поступила в редакцию: 25.09.2023
Принята в печать: 29.10.2023

DOI: 10.35634/2226-3594-2023-62-09



Реферативные базы данных:


© МИАН, 2024