Аннотация:
Изучается игровая задача о сближении нелинейной управляемой системы с целевым множеством в конечномерном фазовом пространстве в фиксированный момент времени. Задача формулируется и изучается в рамках понятий и конструкций теории антагонистических позиционных дифференциальных игр, созданной Н.Н. Красовским и А.И. Субботиным во второй половине 20 века. Одной из центральных проблем теории позиционных дифференциальных игр является проблема вычисления множеств позиционного поглощения в игровых задачах о сближении. В работе исследуется ключевое в теории позиционных дифференциальных игр свойство стабильности, представляющее собой характеристику некоторых замкнутых множеств в пространстве позиций управляемой системы, удобных первому игроку для ведения игры. Важно то, что это свойство является характерным и для множеств разрешимости в задачах о сближении: привлечение понятия стабильности к исследованиям позволяет в некоторых конкретных задачах о сближении получать аналитические описания множеств разрешимости и в ряде конкретных задач разрабатывать алгоритмы приближенного вычисления решения. Приведены некоторые модификации определения $u$-стабильного моста в рассматриваемой задаче о сближении и системы множеств, аппроксимирующей множество достижимости. Приведены также конкретные задачи о сближении механических систем, проведено моделирование решений задач на ЭВМ и представлены графические результаты моделирования.
Ключевые слова:конфликтно управляемая система, управление, игрок, игровая задача о сближении, фиксированный момент, множество разрешимости, позиционная стратегия, позиция, стабильность.