Аннотация:
В статье описываются результаты исследования совместного использования методов интеллектуальной обработки данных, таких как нейронные сети и алгоритмы теории свидетельств. Исследование включает анализ описаний современных разработок, опубликованных за последнее время. Рассмотрены описания состава, структуры и функционирования основных алгоритмов систем, разработанных для проектов в различных областях. Определены варианты совместного применения нейронных сетей и алгоритмов теории свидетельств, включая особенности их архитектур и реализации. Получено подтверждение эффективности совместного применения указанных методов в части уменьшения уровня неопределенности и увеличения уровня доверия к данным,
используемым для принятия решений. Областью применения результатов настоящего исследования является проектирование архитектурных решений гибридной экспертной системы для диагностики состояния технологических процессов и обнаружения аномалий в них.
Ключевые слова:нейронная сеть, теория свидетельств Демпстера–Шафера, гибридная экспертная система, диагностика, технологический процесс, нечеткая система, обучение сети, функция доверия.