Аннотация:
В работе выполнен аналитический обзор, рассмотрены, доработаны и протестированы актуальные нейросетевые методы, алгоритмы и подходы для решения задачи раннего выявления возгораний в лесных массивах по изображениям и видеопотокам с беспилотных летательных аппаратов. Предлагаемая схема решения задачи основана на выделении признаков и использовании машинного обучения для классификации кадров, выделения прямоугольных областей с целевыми источниками огня и точной семантической сегментации очагов огня с применением нейронных сетей сверточного типа. Описаны выполненные модификации архитектур нейронных сетей, позволившие улучшить достигаемые ими F1-меры на 20%.