RUS  ENG
Полная версия
ЖУРНАЛЫ // Israel Journal of Mathematics // Архив

Israel J. Math., 2014, том 199, выпуск 1, страницы 287–308 (Mi ijm2)

Эта публикация цитируется в 11 статьях

Roth's theorem in many variables

T. Schoena, I. D. Shkredovbcd

a Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznán, Poland
b Division of Algebra and Number Theory, Steklov Mathematical Institute, ul. Gubkina, 8, Moscow, Russia, 119991
c IITP RAS, Bolshoy Karetny per. 19, Moscow, Russia, 127994
d Delone Laboratory of Discrete and Computational Geometry, Yaroslavl State University, Sovetskaya str. 14, Yaroslavl, Russia, 150000

Аннотация: We prove that if $A\subseteq\{1,\dots,N\}$ has no nontrivial solution to the equation $x_1 + x_2 + x_3 + x_4 + x_5 = 5y$, then $|A|\ll Ne^{-c(\log N)^{1/7}}$, $c> 0$. In view of the well-known Behrend construction, this estimate is close to best possible.

Поступила в редакцию: 25.10.2011
Исправленный вариант: 30.10.2012

Язык публикации: английский

DOI: 10.1007/s11856-013-0049-0



Реферативные базы данных:


© МИАН, 2024