Аннотация:
В работе доказывается, что арифметические функции некоторого класса,
в который входят, в частности, функции $\Lambda(n)$, $\mu(n)$, $\tau_r(n)$ на интервалах $x<n\leqslant x+y$, $y>x^{7/12}$, равномерно распределены в прогрессиях. Сформулируем полученный результат для $\Lambda(n)$. Пусть
$$
\delta(Q,x,y)=\sum_{k\leqslant Q}\max_{(a,k)=1}\max_{\frac x2\leqslant N\leqslant x}\max_{h\leqslant y}\Bigg|\sum_{\substack{N<n\leqslant N+h\\n\equiv a(\operatorname{mod}k)}}\Lambda(n)-\frac h{\varphi(k)}\Bigg|.
$$
Тогда при $x^{3/5}(\log x)^{2(A+64)+1}\leqslant y\leqslant x$ и $Q=yx^{-1/2}(\log x)^{-(A+64)}$ справедливо соотношение
$\delta(Q,x,y)\ll y\log^{-A}x$. Если $x^{7/12}<y\leqslant x$, то эта оценка выполняется, но с $Q=yx^{-11/20-\delta}$, $\delta>0$.
Библиография: 16 названий.