RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. АН СССР. Сер. матем., 1982, том 46, выпуск 3, страницы 487–523 (Mi im1637)

Эта публикация цитируется в 49 статьях

Ограниченно неоднородные эллиптические и параболические уравнения

Н. В. Крылов


Аннотация: В работе рассматриваются эллиптические уравнения вида
\begin{equation*} 0=F(u_{x^ix^j},u_{x^i},u,1,x) \tag{</nomathmode><mathmode>$*$} \end{equation*}
</mathmode><nomathmode> и параболические уравнения вида
\begin{equation*} u_t=F(u_{x^ix^j},u_{x^i},u,1,t,x), \tag{</nomathmode><mathmode>$**$} \end{equation*}
</mathmode><nomathmode> где $F(u_{ij},u_i,u,\beta,x)$, $F(u_{ij},u_i,u,\beta,t,x)$ – положительно однородные функции первого порядка однородности по $(u_{ij},u_i,u,\beta)$, выпуклые вверх по $(u_{ij})$ и удовлетворяющие равномерному условию строгой эллиптичности. При некоторых условиях гладкости на $F$ и ограниченности сверху вторых производных $F$ по $(u_{ij},u_i,u)$ для этих уравнений доказывается разрешимость задачи во всем пространстве, задачи Дирихле в области с достаточно регулярной границей (уравнения ($*$)), задачи Коши и первой краевой задачи (уравнения ($**$)). Решения ищутся в классах $C^{2+\alpha}$, их существование доказывается с помощью внутренних априорных оценок в $C^{2+\alpha}$.
Библиография: 29 названий.

УДК: 517.9

MSC: 35A05, 35J15, 35K10

Поступило в редакцию: 09.07.1981


 Англоязычная версия: Mathematics of the USSR-Izvestiya, 1983, 20:3, 459–492

Реферативные базы данных:


© МИАН, 2024