Аннотация:
Пусть $0<\alpha<\infty$, $1\leqslant q\leqslant\infty$, $0<\lambda\leqslant\infty$, $1<p\leqslant\infty$, $n=1,2,\dots$, и пусть $R(n,p)$ – класс рациональных функций $\{\rho(z)\}$ степеней не выше чем $n$, аналитических при $|z|\leqslant1$,
\begin{gather*}
\|\rho\|_p=\biggl(\,\int_{|\zeta|=1}|\rho(\zeta)|^p\,|d\zeta|\biggr)^{1/p}\leqslant1\\
(\|\rho\|_\infty=\sup\{|\rho(z)|:|z|=1\}).
\end{gather*}
Доказывается, что если $\alpha\geqslant1+p^{-1}-q^{-1}$, то
$$
\sup\biggl\{\biggl[\,\int_0^1(1-r)^{\alpha\lambda-1}\biggl(\,\int_0^{2\pi}|\rho(r\cdot e^{i\varphi}|^q\,d\varphi\biggr)^{\lambda/q}\,dr\biggr]^{1/\lambda}:\rho\in R(n,p)\biggr\}<\infty.
$$