RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. АН СССР. Сер. матем., 1974, том 38, выпуск 1, страницы 127–137 (Mi im1895)

Эта публикация цитируется в 2 статьях

О представлении аналитических функций в многоугольной выпуклой замкнутой области рядами Дирихле

А. Ф. Леонтьев


Аннотация: Пусть $\overline D$ – выпуклая замкнутая многоугольная область. Показано, что для любой функции $f(z)$, аналитической в открытой области $D$ и непрерывной вместе с первой производной в $\overline D$, можно построить ряд Дирихле (его показатели зависят только от области $D$), который сходится к $f(z)$ всюду в многоугольнике $\overline D$, кроме, быть может, его вершин.

УДК: 517.5

MSC: 30A16

Поступило в редакцию: 15.01.1973


 Англоязычная версия: Mathematics of the USSR-Izvestiya, 1974, 8:1, 133–144

Реферативные базы данных:


© МИАН, 2024