RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. АН СССР. Сер. матем., 1980, том 44, выпуск 5, страницы 1131–1149 (Mi im1956)

Эта публикация цитируется в 2 статьях

Распространение сходимости квазиполиномов

А. М. Седлецкий


Аннотация: Система $\{\exp(i\lambda_nx)\}$, минимальная в $L^p(-a,a)$ ($a<\infty$, $1\leqslant p\leqslant\infty$), называется системой распространения $L^p$-сходимости, если любая последовательность линейных комбинаций этой системы, сходящаяся в $L^p(-a,a)$, будет сходиться по норме $L^p$ на каждом конечном интервале. В классе систем $\{\exp(i\lambda_nx)\}$, порожденных последовательностями $\lambda_n$ корней целых функций вида
$$ L(z)=\int_{-a}^a\frac{e^{izt}k(t)}{(a-|t|)^\alpha}\,dt,\quad0<\alpha<1,\quad\operatorname{var}k(t)<\infty,\quad k(\pm a\mp0)\ne0, $$
где $k(t)$ обладает еще некоторой гладкостью в окрестностях точек $\pm a$, дано полное описание систем распространения сходимости. А именно, при $1<p<\infty$ это свойство имеет место тогда и только тогда, когда $\alpha\ne1-1/p$; при $p=1,\infty$, распространения сходимости нет. Этот результат применяется к вопросу о базисах из экспонент в пространствах $L^p(-a,a)$, $1<p<\infty$.
Библиография: 13 названий.

УДК: 517.5

MSC: Primary 30C15, 46E30; Secondary 26A99, 30D15, 42A45, 45D05

Поступило в редакцию: 16.10.1979


 Англоязычная версия: Mathematics of the USSR-Izvestiya, 1981, 17:2, 353–368

Реферативные базы данных:


© МИАН, 2024