Аннотация:
В работе рассматриваются многообразия с действиями компактных групп Ли. По каждому рациональному роду Хирдебруха $h\colon\Omega_*\to Q$ строится “эквивариантный род” $h^G$ – гомоморфизм из кольца бордизмов $G$-многообразий в кольцо $K(BG)\otimes Q$. С помощью языка формальных групп для некоторых родов доказано, что для компактной связной группы Ли $G$ образ гомоморфизма $h^G$ принадлежит подкольцу $Q\subset K(BG)\otimes Q$. Следствием этого являются чрезвычайно простые соотношения между значениями этих родов на классах бордизмов $S^1$-многообразия и подмногообразий его неподвижных точек. В частности получено новое доказательство формулы Атьи–Хирцебруха.