RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. АН СССР. Сер. матем., 1937, том 1, выпуск 1, страницы 15–50 (Mi im2621)

Эта публикация цитируется в 1 статье

Периодические решения одного класса уравнений в частных производных

Н. А. Артемьев


Аннотация: Исследуется существование периодических решений одного класса нелинейных уравнений в частных производных гиперболического типа. При определенных условиях доказывается теорема существования периодических решений. Метод заключается в приведении задачи к бесконечной системе интегральных уравнений Фредгольма. В случае, названном автором “квазирезонансом”, доказывается теорема несуществования периодических решений. Дается пример нелинейного уравнения, показывающий, что теорию периодических решений Пуанкаре в некоторых случаях нельзя распространить на уравнения в частных производных.



Реферативные базы данных:


© МИАН, 2024