RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 1999, том 63, выпуск 6, страницы 3–28 (Mi im266)

Эта публикация цитируется в 3 статьях

Неархимедовы аналоги ортогональных и симметрических операторов

С. А. Альбевериоa, Х. М. Байод, С. Перес-Гарсиа, А. Ю. Хренников, Р. Чанчи

a Ruhr-Universität Bochum, Mathematischer Institut

Аннотация: Изучаются ортогональные и симметрические операторы в неархимедовых гильбертовых пространствах в связи с $p$-адическим квантованием. Это квантование описывает измерения с конечной точностью. Симметрические (ограниченные) операторы в $p$-адическом гильбертовом пространстве представляют физические наблюдаемые. Мы изучаем спектральные свойства одного из самых важных квантовых операторов, а именно оператора координаты (представленного в $p$-адическом гильбертовом $L_2$-пространстве относительно $p$-адической гауссовой меры). Ортогональные изометрические изоморфизмы $p$-адического гильбертового пространства сохраняют точность измерений. Мы изучаем свойства ортогональных операторов. Доказывается, что всякий ортогональный оператор в неархимедовом гильбертовом пространстве непрерывен. Однако существуют разрывные операторы с плотной областью определения, сохраняющие скалярное произведение. Существуют неизометрические ортогональные операторы. Мы описываем некоторые классы ортогональных изометрических операторов в конечномерных пространствах, а также изучаем некоторые общие вопросы теории неархимедовых гильбертовых пространств (в астности, общие соотношения между топологией, нормой и скалярным произведением).
Библиография: 34 наименования.

MSC: 46S10

Поступило в редакцию: 28.10.1997

DOI: 10.4213/im266


 Англоязычная версия: Izvestiya: Mathematics, 1999, 63:6, 1063–1087

Реферативные базы данных:


© МИАН, 2024