Аннотация:
В статье доказывается, что если две плоские каспидальные кривые $B_1$ и $B_2$ имеют эквивалентные брэйд-монодромные разложения на множители, то кривые $B_1$ и $B_2$ гладко изотопны в $\mathbb C\mathbb P^2$. В качестве следствия получаем, что если дискриминантные кривые (кривые ветвления) $B_1$ и $B_2$ общих проекций на $\mathbb{CP}^2$ поверхностей общего типа $S_1$ и $S_2$, вложенных в проективное пространство с помощью кратного канонического класса, имеют эквивалентные брэйд-монодромные разложения на множители, то $S_1$ и $S_2$ (рассматриваемые как вещественные четырехмерные многообразия) являются диффеоморфными.
Библиография: 8 наименований