RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2000, том 64, выпуск 4, страницы 141–162 (Mi im298)

Эта публикация цитируется в 5 статьях

О группе Брауэра

С. Г. Танкеев

Владимирский государственный университет им. А. Г. и Н. Г. Столетовых

Аннотация: Для арифметической модели $X$ поверхности Ферма или гиперкэлерова многообразия с числом Бетти $\operatorname{b}_2(V\otimes\bar k)>3$ над чисто мнимым числовым полем $k$ доказывается конечность $l$-компоненты $\operatorname{Br}'(X)$ для любого простого числа $l\gg 0$. Это дает вариант гипотезы М. Артина.
Если $V$ – гладкая проективная иррегулярная поверхность над числовым полем $k$, $V(k)\ne\varnothing$, то для любого простого числа $l$ $l$-примарная компонента группы $\operatorname{Br}(V)/{\operatorname{Br}(k)}$ бесконечна. Пусть $A^1\to M^1$ – универсальное семейство эллиптических кривых с якобиевой жесткостью уровня $N\geqslant 3$ над числовым полем $k\supset\mathbb Q(e^{2\pi i/N})$. Предположим, что $M^1(k)\ne\varnothing$. Если $V$ – гладкая проективная компактификация поверхности $A^1$, то для любого достаточно большого простого числа $l$ $l$-примарная компонента группы $\operatorname{Br}(V)/{\operatorname{Br}(\overline M^1)}$ конечна.
Библиография: 28 наименований.

MSC: 14J20

Поступило в редакцию: 22.12.1998

DOI: 10.4213/im298


 Англоязычная версия: Izvestiya: Mathematics, 2000, 64:4, 787–806

Реферативные базы данных:


© МИАН, 2024