Аннотация:
С помошью комбинации алгебраической и лагранжевой геометрий в каждом пространстве конформных блоков строится специальный базис – базис Бора–Зоммерфельда (BS). Применяется метод Борсвика–Поля–Урибе [3], в котором каждый вектор BS-базиса определяется полувзвешенным лежандровым распределением бор-зоммерфельдовского слоя вещественной поляризации симплектического многообразия. Преимущество BS-базисов по сравнению с базисами тэта-функций (см. [23]) заключается в том, что мы можем использовать мощные методы анализа асимптотик квантовых состояний. Это дает
квазиклассическую унитарность базисов Бора–Зоммерфельда. Следовательно, мы можем применить эти базисы для сравнения связности Хитчина [11] со связностью, пределяемой монодромией уравнения Книжника–Замолодчикова, в комбинаторной конструкции (см., например, [14] и [15]).
Библиография: 31 наименование.