Аннотация:
В работе устанавливаются условия на плоское множество $\Phi$, при которых для любой функции $f(x,y)$ с заданным модулем непрерывности $\omega(f;t)$ существует функция вида $\varphi(x)+\psi(y)$, имеющая ту же мажоранту модуля непрерывности и реализующая нижнюю грань
$$
E_f=\inf_{\varphi,\psi}\sup_{P\in\Phi}|f(x,y)-\{\varphi(x)+\psi(y)\}|.
$$
Для случая, когда множество $\Phi$ есть прямоугольник со сторонами, параллельными осям координат, в работе получена оценка значения величины $E_f$.