Аннотация:
Обобщение равенства Парсеваля, приведенное в [2], трактуется с точки зрения систем разложения, для чего приведены определение и основные свойства введенных Т. П. Лукашенко орторекурсивных систем разложения и доказана эквивалентность результата Стечкиных сходимости орторекурсивного разложения по некоторой системе (системе сигнумов) любого элемента из $L^2[0,1]$ к самому этому элементу. Применяемый подход позволяет исследовать вопросы равномерной сходимости, поточечной сходимости и сходимости в метриках $L^p$ разложений по системе сигнумов функций не только из $L^2 [0,1]$, но и из $L^p(X,\Xi,\mu)$, где $(X,\Xi,\mu)$ – произвольное измеримое
пространство с конечной мерой. Доказано, что для функций из $L^p$, $1\leqslant p\leqslant\infty$, имеет место сходимость в метрике $L^p$, для непрерывных функций –
равномерная сходимость, для существенно неограниченных – поточечная сходимость орторекурсивного разложения по системе сигнумов к разлагаемому элементу.
Библиография: 6 наименований.