Аннотация:
Изучается задача о предельном поведении спектра оператора $L(\varepsilon)=i\varepsilon y^{\prime\prime}+x^2y$ с краевыми условиями Дирихле на конечном отрезке,
когда положительный параметр $\varepsilon$ стремится к нулю. Доказано, что спектр
концентрируется вдоль трех кривых в комплексной плоскости, соединяющих точку-узел $\lambda_0$, лежащую в числовом образе оператора с точками 0, 1 и $-i\infty$. Найдены равномерные по $\varepsilon$ квазиклассические формулы распределения собственных значений вдоль этих трех кривых.
Библиография: 7 наименований.