RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2002, том 66, выпуск 4, страницы 177–204 (Mi im399)

Эта публикация цитируется в 23 статьях

О предельном поведении спектра модельной задачи для уравнения Орра–Зоммерфельда с профилем Пуазейля

С. Н. Туманов, А. А. Шкаликов


Аннотация: Изучается задача о предельном поведении спектра оператора $L(\varepsilon)=i\varepsilon y^{\prime\prime}+x^2y$ с краевыми условиями Дирихле на конечном отрезке, когда положительный параметр $\varepsilon$ стремится к нулю. Доказано, что спектр концентрируется вдоль трех кривых в комплексной плоскости, соединяющих точку-узел $\lambda_0$, лежащую в числовом образе оператора с точками 0, 1 и $-i\infty$. Найдены равномерные по $\varepsilon$ квазиклассические формулы распределения собственных значений вдоль этих трех кривых.
Библиография: 7 наименований.

УДК: 517.927+517.928

MSC: 34L20, 34B24, 76E15

Поступило в редакцию: 04.07.2001

DOI: 10.4213/im399


 Англоязычная версия: Izvestiya: Mathematics, 2002, 66:4, 829–856

Реферативные базы данных:


© МИАН, 2024