Аннотация:
Доказана теорема о существовании, единственности и непрерывной зависимости от параметров седловой точки в минимаксной задаче, возникающей, например, в теории дифференциальных игр. Полученная теорема существования седловой точки не следует из известных теорем Дж. фон Неймана, Ки Фаня, М. Сайона и других теорем, так как пересечение множеств подуровней рассматриваемой функции может оказаться не связным и не пустым. Условия полученной теоремы сформулированы в терминах свойств сильной выпуклости и слабой выпуклости функций, заданных в банаховом пространстве. Исследованы свойства сильно и слабо выпуклых функций, связанные с операциями минимизации и максимизации. Получены неулучшаемые оценки параметров выпуклости для инфимальной конволюции (эписуммы) и эпиразности функций, в результате чего построено исчисление параметров выпуклости функций относительно эпиопераций. Приведены характерные примеры и показана существенность предположений доказанных теорем.
Библиография: 11 наименований.