Аннотация:
Найдена точная нижняя грань типов целых функций порядка $\rho\in(0,1)$, последовательность нулей которых расположена на одном луче и имеет заданные нижнюю и верхнюю плотности при показателе $\rho$. Систематически изучено поведение полученной экстремальной величины
в зависимости от $\rho$ и указанных характеристик распределения нулей. Дано приложение этих результатов к экстремальной задаче о радиусе полноты систем экспонент.
Библиография: 22 наименования.
Ключевые слова:экстремальные задачи, тип целой функции, верхняя и нижняя плотности нулей,
полнота системы экспонент.