Аннотация:
Исследуются $I$-сводимые алгебраические системы, а также теории $I$-сводимых систем.
Показано, что отсутствие независимой формулы в теории не является необходимым условием для $I$-сводимости её моделей даже для расширений арифметики Пресбургера.
В частности, существует целый класс теорий – расширений арифметики Пресбургера, в которых имеется независимая формула и которые имеют $I$-сводимые модели. Показано, что из $I$-сводимости малой алгебраической системы автоматически следует, что каждая формула эквивалентна в ней некоторой $P$-ограниченной формуле, следовательно, для теорий таких систем выполнена трансляционная теорема.