Аннотация:
Пространства модулей алгебраических кривых и тесно связанные с ними пространства Гурвица – пространства мероморфных функций на кривых – появляются естественным образом во многих задачах алгебраической геометрии и математической физики, особенно в связи с теорией струн и теорией инвариантов Громова–Виттена. К изучению геометрии и топологии этих пространств сводится, в частности, классическая задача Гурвица о подсчете количества топологически различных разветвленных накрытий над сферой
с предписанными типами ветвлений. Кольца когомологий этих пространств довольно сложны даже в простейшем случае рациональных кривых и функций. Тем не менее, наиболее важные с точки зрения приложений когомологические классы, двойственные по Пуанкаре стратам функций с фиксированными особенностями, выражаются в терминах относительно простого набора “основных” (в некотором смысле, тавтологических) классов. Цель статьи – выделить эти основные классы, описать соотношения между ними и найти выражения для стратов в терминах этих классов. Наш подход основан на теории Тома универсальных многочленов особенностей, которая распространена на случай мультиособенностей в работах первого автора. Хотя задача Гурвица в полном объеме все еще не решена, данный подход позволяет существенно продвинуться в ее решении, а также в понимании геометрии и топологии пространств Гурвица.
Библиография: 22 наименования.