Аннотация:
Методом модельной поверхности изучаются четырехмерные вещественные подмногообразия пространства $\mathbb C^3$. Доказано, что размерность группы голоморфных симметрий произвольного ростка четырехмерного аналитического многообразия не превосходит пяти, если только она конечна (имеются лишь два исключительных случая бесконечной размерности). Вычислена оболочка голоморфности модельной поверхности. Построена нормальная форма уравнения произвольного ростка и на ее основе дана голоморфная классификация вполне невырожденных ростков. Показано, что вполне невырожденная $\mathrm{CR}$-структура накладывает сильные ограничения на топологическое строение многообразия, в частности нельзя вполне невырожденно вложить четырехмерную сферу $S^4$ в трехмерное комплексное многообразие.
Библиография: 7 наименований.