RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Российской академии наук. Серия математическая // Архив

Изв. РАН. Сер. матем., 2013, том 77, выпуск 3, страницы 109–138 (Mi im7966)

Эта публикация цитируется в 23 статьях

Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds

M. Michelia, P. W. Michorb, D. Mumfordc

a Université René Descartes
b University of Vienna
c Brown University

Аннотация: Given a finite-dimensional manifold $N$, the group $\operatorname{Diff}_{\mathcal S}(N)$ of diffeomorphisms diffeomorphism of $N$ which decrease suitably rapidly to the identity, acts on the manifold $B(M,N)$ of submanifolds of $N$ of diffeomorphism-type $M$, where $M$ is a compact manifold with $\operatorname{dim} M<\operatorname{dim} N$. Given the right-invariant weak Riemannian metric on $\operatorname{Diff}_{\mathcal S}(N)$ induced by a quite general operator $L\colon \mathfrak X_{\mathcal S}(N)\to \Gamma(T^*N\otimes\operatorname{vol}(N))$, we consider the induced weak Riemannian metric on $B(M,N)$ and compute its geodesics and sectional curvature. To do this, we derive a covariant formula for the curvature in finite and infinite dimensions, we show how it makes O'Neill's formula very transparent, and we finally use it to compute the sectional curvature on $B(M,N)$.
Bibliography: 15 titles.

Ключевые слова: robust infinite-dimensional weak Riemannian manifolds, curvature in terms of the cometric, right-invariant Sobolev metrics on diffeomorphism groups, O'Neill's formula, manifold of submanifolds.

УДК: 514.83+517.988.24

MSC: 58B20, 58D15, 37K65

Поступило в редакцию: 16.02.2012

Язык публикации: английский

DOI: 10.4213/im7966


 Англоязычная версия: Izvestiya: Mathematics, 2013, 77:3, 541–570

Реферативные базы данных:


© МИАН, 2024